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Definition
Let 〈X ,d〉 be a metric space. A subset A ⊆ X is strongly porous
if there exist a p > 0 such that for every x ∈ X and every
r ∈ (0, diamX ), there is y ∈ X such that Bpr (y) ⊆ Br (x)\A.

Lets call SP(X ) the σ-ideal generated by strongly porous sets
of X .
There are many concepts regarding porosity. One of them
catched the attention of J. Brendle and R. Repický.
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Theorem (J. Brendle, R. Repický)

add(UP) = ω1, cof(UP) = c, cov(UP) ≤ cov(N), non(UP) ≥ p,
non(UP) ≥ add(N)

Theorem (M. Hrušák, O. Zindulka)

It is consistent with ZFC that cov(SP) > cof(N) and that
non(SP) < p

Our goal is to prove the consistency of non(SP) > add(N)
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¿What can we say about the cardinal invariants of SP(R)?

Theorem
add(SP(R)) = add(SP(2ω)).
cov(SP(R)) = cov(SP(2ω)).
non(SP(R)) = non(SP(2ω)).
cof(SP(R)) = cof(SP(2ω)).
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Lemma
A subset A ⊆ 2ω is strongly porous iff there is a n ∈ ω such that
for every p ∈ 2<ω there is q ∈ 2<ω such that p ⊆ q, |q| = |p|+ n
and A ∩ 〈q〉 = ∅.

Definition
Let A ⊆ 2ω. Lets say that A is a strongly porous set of n degree
if for every p ∈ 2<ω there is q ∈ 2<ω such that p ⊆ q,
|q| = |p|+ n and A ∩ 〈q〉 = ∅.

Therefore A ⊆ 2ω is strongly porous iff there exists n such that
A is strongly porous of n degree.
Lets call SPn the σ-ideal generated by strongly porous subsets
of n degree.
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Definition

A forcing P strongly preserves non(SPn) if for every
.

X , a P
name for a porous set of n degree, there is Y ∈ SPn such that
for every x ∈ 2ω, if x /∈ Y , then P “x /∈

.
X”.

Lemma
If P strongly preserves non(SPn), then V [G] |= 2ω ∩ V /∈ SPn.
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Lemma
Let P be a σ (2n)-linked forcing, then P strongly preserves
non(SPn).

Lemma
Finite iteration of c.c.c. forcings which strongly preserves
non(SPn), strongly preserves non(SPn).
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Let
A = {B ∈ Borel(2ω) : µ(B) >

1
2
}

and lets say that A ≤ B iff A ⊆ B. This is called the amoeba
forcing.

Lemma
For every n ∈ ω, A is a σ n-linked forcing.

Therefore A preserves non(SPn) for every n ∈ ω.

Lemma
If G is a generic filter over A, then V [G] |= µ(

⋃
(N ∩ V )) = 0.
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Theorem
It is consistent with ZFC that non(SP) < add(N).

Start with a model of CH and consider a finite suport iteration of
lenght ω2 of amoeba forcing. If we have an uncountable family
N of null sets, then this family is encoded in a middle step of the
iteration. Then, by the previous lemma, the union of this family
is a null set in the next step of the iteration. On the other hand,
as this forcing strongly preserves non(SP), non(SP) = ω1.
Wait! there’s more.
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What can we say about the cardinal non(SPn)?
Let P be the following forcing

Pn = {〈s,F 〉 : (a) s;2<ω → 2n,
(b) |s| < ω,
(c) F ∈ [2ω]<ω,
(d) for every σ ∈ dom(s), F ∩ 〈σas(σ)〉 = ∅,

we say that 〈s,F 〉 ≤ 〈s′,F ′〉 iff s′ ⊆ s and F ′ ⊆ F .
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Lemma
Pn is a σ (2n − 1)-linked forcing.

Lemma
Let G be a Pn generic filter over a ground model M. Then
V [G] |= 2ω ∩ V ∈ SPn.

(Pn can’t be a σ (2n)-linked forcing.)

Theorem
For every n ∈ ω and for every k < 2n, mσ k−linked ≤ non(SPn).
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Theorem
It is consistent with ZFC that non(SPn) < non(SPn+1).

Start with a ground model of ZFC + CH. Consider a finite
support iteration of lenght ω2 of the forcing Pn+1. As all of these
forcings strongly preserve non(SP1), then non(SPn) = ω1. On
the other hand, a reflection argument shows that
non(SPn+1) ≥ ω2.
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Here are some questions for you.
What can we say about add(SP) and cof(SP)?
Can we separate more than 2 non(SPn)?
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