Cardinal Invariants of porous spaces

Arturo Martínez

CCM - UNAM Hejnice 2013

Arturo Martínez Cardinal Invariants of porous sets

イロト 不得 とくほ とくほとう

Definition

Let $\langle X, d \rangle$ be a metric space. A subset $A \subseteq X$ is *strongly porous* if there exist a p > 0 such that for every $x \in X$ and every $r \in (0, \operatorname{diam} X)$, there is $y \in X$ such that $B_{pr}(y) \subseteq B_r(x) \setminus A$.

Lets call **SP**(*X*) the σ -ideal generated by strongly porous sets of *X*.

There are many concepts regarding porosity. One of them catched the attention of J. Brendle and R. Repický.

ヘロト ヘ戸ト ヘヨト ヘヨト

Definition

Let $\langle X, d \rangle$ be a metric space. A subset $A \subseteq X$ is *strongly porous* if there exist a p > 0 such that for every $x \in X$ and every $r \in (0, \operatorname{diam} X)$, there is $y \in X$ such that $B_{pr}(y) \subseteq B_r(x) \setminus A$.

Lets call SP(X) the σ -ideal generated by strongly porous sets of *X*.

There are many concepts regarding porosity. One of them catched the attention of J. Brendle and R. Repický.

イロト イポト イヨト イヨト

Definition

Let $\langle X, d \rangle$ be a metric space. A subset $A \subseteq X$ is *strongly porous* if there exist a p > 0 such that for every $x \in X$ and every $r \in (0, \operatorname{diam} X)$, there is $y \in X$ such that $B_{pr}(y) \subseteq B_r(x) \setminus A$.

Lets call **SP**(*X*) the σ -ideal generated by strongly porous sets of *X*.

There are many concepts regarding porosity. One of them catched the attention of J. Brendle and R. Repický.

・ロト ・同ト ・ヨト ・ヨト

Theorem (J. Brendle, R. Repický)

 $\begin{array}{l} \text{add}(\textbf{UP})=\omega_1,\,\text{cof}(\textbf{UP})=\mathfrak{c},\,\text{cov}(\textbf{UP})\leq\text{cov}(\mathcal{N}),\,\text{non}(\textbf{UP})\geq\mathfrak{p},\\ \text{non}(\textbf{UP})\geq\text{add}(\mathcal{N}) \end{array}$

Theorem (M. Hrušák, O. Zindulka)

It is consistent with ZFC that $\mathsf{cov}(SP) > \mathsf{cof}(\mathcal{N})$ and that $\mathsf{non}(SP) < \mathfrak{p}$

Our goal is to prove the consistency of $non(SP) > add(\mathcal{N})$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Theorem (J. Brendle, R. Repický)

 $\begin{array}{l} \text{add}(\textbf{UP}) = \omega_1, \, \text{cof}(\textbf{UP}) = \mathfrak{c}, \, \text{cov}(\textbf{UP}) \leq \text{cov}(\mathcal{N}), \, \text{non}(\textbf{UP}) \geq \mathfrak{p}, \\ \text{non}(\textbf{UP}) \geq \text{add}(\mathcal{N}) \end{array}$

Theorem (M. Hrušák, O. Zindulka)

It is consistent with ZFC that $\mathsf{cov}(SP) > \mathsf{cof}(\mathcal{N})$ and that $\mathsf{non}(SP) < \mathfrak{p}$

Our goal is to prove the consistency of $non(SP) > add(\mathcal{N})$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Theorem (J. Brendle, R. Repický)

 $\begin{array}{l} \text{add}(\textbf{UP}) = \omega_1, \, \text{cof}(\textbf{UP}) = \mathfrak{c}, \, \text{cov}(\textbf{UP}) \leq \text{cov}(\mathcal{N}), \, \text{non}(\textbf{UP}) \geq \mathfrak{p}, \\ \text{non}(\textbf{UP}) \geq \text{add}(\mathcal{N}) \end{array}$

Theorem (M. Hrušák, O. Zindulka)

It is consistent with ZFC that $\mathsf{cov}(SP) > \mathsf{cof}(\mathcal{N})$ and that $\mathsf{non}(SP) < \mathfrak{p}$

Our goal is to prove the consistency of $non(\textbf{SP}) > add(\mathcal{N})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

¿What can we say about the cardinal invariants of $SP(\mathbb{R})$?

[heorem]

•
$$\operatorname{add}(\operatorname{SP}(\mathbb{R})) = \operatorname{add}(\operatorname{SP}(2^{\omega})).$$

•
$$\operatorname{cov}(\operatorname{SP}(\mathbb{R})) = \operatorname{cov}(\operatorname{SP}(2^{\omega})).$$

•
$$\operatorname{non}(\operatorname{SP}(\mathbb{R})) = \operatorname{non}(\operatorname{SP}(2^{\omega})).$$

•
$$\operatorname{cof}(\operatorname{SP}(\mathbb{R})) = \operatorname{cof}(\operatorname{SP}(2^{\omega})).$$

Arturo Martínez Cardinal Invariants of porous sets

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

¿What can we say about the cardinal invariants of $SP(\mathbb{R})$?

Theorem

- $add(SP(\mathbb{R})) = add(SP(2^{\omega})).$
- $\operatorname{cov}(\operatorname{SP}(\mathbb{R})) = \operatorname{cov}(\operatorname{SP}(2^{\omega})).$
- $\operatorname{non}(\operatorname{SP}(\mathbb{R})) = \operatorname{non}(\operatorname{SP}(2^{\omega})).$
- $\operatorname{cof}(\operatorname{SP}(\mathbb{R})) = \operatorname{cof}(\operatorname{SP}(2^{\omega})).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Lemma

A subset $A \subseteq 2^{\omega}$ is strongly porous iff there is a $n \in \omega$ such that for every $p \in 2^{<\omega}$ there is $q \in 2^{<\omega}$ such that $p \subseteq q$, |q| = |p| + nand $A \cap \langle q \rangle = \emptyset$.

Definition

Let $A \subseteq 2^{\omega}$. Lets say that *A* is a *strongly porous set of n* degree if for every $p \in 2^{<\omega}$ there is $q \in 2^{<\omega}$ such that $p \subseteq q$, |q| = |p| + n and $A \cap \langle q \rangle = \emptyset$.

Therefore $A \subseteq 2^{\omega}$ is strongly porous iff there exists *n* such that *A* is strongly porous of *n* degree. Lets call **SP**_n the σ -ideal generated by strongly porous subsets of *n* degree.

ヘロン ヘアン ヘビン ヘビン

Lemma

A subset $A \subseteq 2^{\omega}$ is strongly porous iff there is a $n \in \omega$ such that for every $p \in 2^{<\omega}$ there is $q \in 2^{<\omega}$ such that $p \subseteq q$, |q| = |p| + nand $A \cap \langle q \rangle = \emptyset$.

Definition

Let $A \subseteq 2^{\omega}$. Lets say that *A* is a *strongly porous set of n* degree if for every $p \in 2^{<\omega}$ there is $q \in 2^{<\omega}$ such that $p \subseteq q$, |q| = |p| + n and $A \cap \langle q \rangle = \emptyset$.

Therefore $A \subseteq 2^{\omega}$ is strongly porous iff there exists *n* such that *A* is strongly porous of *n* degree.

Lets call \mathbf{SP}_n the σ -ideal generated by strongly porous subsets of n degree.

・ロト ・ 理 ト ・ ヨ ト ・

Lemma

A subset $A \subseteq 2^{\omega}$ is strongly porous iff there is a $n \in \omega$ such that for every $p \in 2^{<\omega}$ there is $q \in 2^{<\omega}$ such that $p \subseteq q$, |q| = |p| + nand $A \cap \langle q \rangle = \emptyset$.

Definition

Let $A \subseteq 2^{\omega}$. Lets say that *A* is a *strongly porous set of n* degree if for every $p \in 2^{<\omega}$ there is $q \in 2^{<\omega}$ such that $p \subseteq q$, |q| = |p| + n and $A \cap \langle q \rangle = \emptyset$.

Therefore $A \subseteq 2^{\omega}$ is strongly porous iff there exists *n* such that *A* is strongly porous of *n* degree. Lets call **SP**_{*n*} the σ -ideal generated by strongly porous subsets of *n* degree.

・ロト ・ 理 ト ・ ヨ ト ・

Definition

A forcing \mathbb{P} strongly preserves non(**SP**_{*n*}) if for every \dot{X} , a \mathbb{P} name for a porous set of *n* degree, there is $Y \in$ **SP**_{*n*} such that for every $x \in 2^{\omega}$, if $x \notin Y$, then $\Vdash_{\mathbb{P}}$ " $x \notin \dot{X}$ ".

_emma

If \mathbb{P} strongly preserves non(**SP**_{*n*}), then $V[G] \models 2^{\omega} \cap V \notin \mathbf{SP}_n$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Definition

A forcing \mathbb{P} strongly preserves non(**SP**_{*n*}) if for every X, a \mathbb{P} name for a porous set of *n* degree, there is $Y \in$ **SP**_{*n*} such that for every $x \in 2^{\omega}$, if $x \notin Y$, then $\Vdash_{\mathbb{P}}$ " $x \notin X$ ".

Lemma

If \mathbb{P} strongly preserves non(**SP**_{*n*}), then $V[G] \models 2^{\omega} \cap V \notin \mathbf{SP}_n$.

イロト イポト イヨト イヨト 一臣

Lemma

Let \mathbb{P} be a σ (2^{*n*})-linked forcing, then \mathbb{P} strongly preserves non(**SP**_{*n*}).

_emma

Finite iteration of c.c.c. forcings which strongly preserves non(**SP**_n), strongly preserves non(**SP**_n).

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Lemma

Let \mathbb{P} be a σ (2^{*n*})-linked forcing, then \mathbb{P} strongly preserves non(**SP**_{*n*}).

Lemma

Finite iteration of c.c.c. forcings which strongly preserves $non(SP_n)$, strongly preserves $non(SP_n)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Let

$$\mathbb{A} = \{ B \in \textit{Borel}(2^{\omega}) : \mu(B) > \frac{1}{2} \}$$

and lets say that $A \leq B$ iff $A \subseteq B$. This is called the amoeba forcing.

_emma

For every $n \in \omega$, \mathbb{A} is a σ *n*-linked forcing.

Therefore \mathbb{A} preserves non(**SP**_{*n*}) for every $n \in \omega$.

_emma

If G is a generic filter over \mathbb{A} , then $V[G] \models \mu(\bigcup(\mathcal{N} \cap V)) = 0$.

・ロト ・ ア・ ・ ヨト ・ ヨト

Let

$$\mathbb{A} = \{ B \in \textit{Borel}(2^{\omega}) : \mu(B) > \frac{1}{2} \}$$

and lets say that $A \leq B$ iff $A \subseteq B$. This is called the amoeba forcing.

Lemma

For every $n \in \omega$, \mathbb{A} is a σ *n*-linked forcing.

Therefore A preserves non(**SP**_{*n*}) for every $n \in \omega$.

_emma

If G is a generic filter over \mathbb{A} , then $V[G] \models \mu(\bigcup(\mathcal{N} \cap V)) = 0$.

イロト 不得 とくほと くほとう

э

Let

$$\mathbb{A} = \{ B \in \textit{Borel}(2^{\omega}) : \mu(B) > \frac{1}{2} \}$$

and lets say that $A \leq B$ iff $A \subseteq B$. This is called the amoeba forcing.

Lemma

For every $n \in \omega$, \mathbb{A} is a σ *n*-linked forcing.

Therefore \mathbb{A} preserves non(**SP**_{*n*}) for every $n \in \omega$.

_emma

If G is a generic filter over \mathbb{A} , then $V[G] \models \mu(\bigcup(\mathcal{N} \cap V)) = 0$.

イロト 不得 とくほと くほとう

э

Let

$$\mathbb{A} = \{ B \in \textit{Borel}(2^{\omega}) : \mu(B) > \frac{1}{2} \}$$

and lets say that $A \leq B$ iff $A \subseteq B$. This is called the amoeba forcing.

Lemma

For every $n \in \omega$, \mathbb{A} is a σ *n*-linked forcing.

Therefore \mathbb{A} preserves non(**SP**_{*n*}) for every $n \in \omega$.

Lemma

If G is a generic filter over \mathbb{A} , then $V[G] \models \mu(\bigcup(\mathcal{N} \cap V)) = 0$.

ヘロト 人間 とくほとくほとう

э

Theorem

It is consistent with ZFC that non(SP) < add(N).

Start with a model of CH and consider a finite suport iteration of lenght ω_2 of amoeba forcing. If we have an uncountable family \mathcal{N} of null sets, then this family is encoded in a middle step of the iteration. Then, by the previous lemma, the union of this family is a null set in the next step of the iteration. On the other hand, as this forcing strongly preserves non(**SP**), non(**SP**) = ω_1 . Wait! there's more.

ヘロト 人間 ト ヘヨト ヘヨト

Theorem

It is consistent with ZFC that $non(SP) < add(\mathcal{N})$.

Start with a model of CH and consider a finite suport iteration of lenght ω_2 of amoeba forcing. If we have an uncountable family \mathcal{N} of null sets, then this family is encoded in a middle step of the iteration. Then, by the previous lemma, the union of this family is a null set in the next step of the iteration. On the other hand, as this forcing strongly preserves non(**SP**), non(**SP**) = ω_1 . Wait! there's more.

ヘロン 人間 とくほ とくほ とう

э.

Theorem

It is consistent with ZFC that $non(SP) < add(\mathcal{N})$.

Start with a model of CH and consider a finite suport iteration of lenght ω_2 of amoeba forcing. If we have an uncountable family \mathcal{N} of null sets, then this family is encoded in a middle step of the iteration. Then, by the previous lemma, the union of this family is a null set in the next step of the iteration. On the other hand, as this forcing strongly preserves non(**SP**), non(**SP**) = ω_1 . Wait! there's more.

ヘロン 人間 とくほ とくほ とう

What can we say about the cardinal non(**SP**_{*n*})? Let \mathbb{P} be the following forcing

$$\begin{split} \mathbb{P}_n &= \{ \langle \boldsymbol{s}, \boldsymbol{F} \rangle : \quad \textbf{(a)} \; \boldsymbol{s}; 2^{<\omega} \to 2^n, \\ & \textbf{(b)} \; |\boldsymbol{s}| < \omega, \\ & \textbf{(c)} \; \boldsymbol{F} \in [2^{\omega}]^{<\omega}, \\ & \textbf{(d)} \; \text{for every} \; \sigma \in \operatorname{dom}(\boldsymbol{s}), \; \boldsymbol{F} \cap \langle \sigma^{\frown} \boldsymbol{s}(\sigma) \rangle = \emptyset, \end{split}$$

we say that $\langle s, F \rangle \leq \langle s', F' \rangle$ iff $s' \subseteq s$ and $F' \subseteq F$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lemma

 \mathbb{P}_n is a σ (2^{*n*} – 1)-linked forcing.

_emma

Let *G* be a \mathbb{P}_n generic filter over a ground model *M*. Then $V[G] \models 2^{\omega} \cap V \in \mathbf{SP}_n$.

(\mathbb{P}_n can't be a σ (2^{*n*})-linked forcing.)

Theorem

For every $n \in \omega$ and for every $k < 2^n$, $\mathfrak{m}_{\sigma k-\operatorname{linked}} \leq \operatorname{non}(\mathbf{SP}_n)$.

イロト 不得 とくほ とくほ とう

Lemma

 \mathbb{P}_n is a σ (2^{*n*} – 1)-linked forcing.

Lemma

Let *G* be a \mathbb{P}_n generic filter over a ground model *M*. Then $V[G] \models 2^{\omega} \cap V \in \mathbf{SP}_n$.

(\mathbb{P}_n can't be a σ (2^{*n*})-linked forcing.)

Theorem

For every $n \in \omega$ and for every $k < 2^n$, $\mathfrak{m}_{\sigma k-\operatorname{linked}} \leq \operatorname{non}(\mathbf{SP}_n)$.

イロン 不得 とくほ とくほ とうほ

Lemma

 \mathbb{P}_n is a σ (2^{*n*} – 1)-linked forcing.

Lemma

Let *G* be a \mathbb{P}_n generic filter over a ground model *M*. Then $V[G] \models 2^{\omega} \cap V \in \mathbf{SP}_n$.

(\mathbb{P}_n can't be a σ (2^{*n*})-linked forcing.)

Theorem

For every $n \in \omega$ and for every $k < 2^n$, $\mathfrak{m}_{\sigma k-\operatorname{linked}} \leq \operatorname{non}(\mathbf{SP}_n)$.

イロン 不得 とくほ とくほ とうほ

Lemma

 \mathbb{P}_n is a σ (2^{*n*} – 1)-linked forcing.

Lemma

Let *G* be a \mathbb{P}_n generic filter over a ground model *M*. Then $V[G] \models 2^{\omega} \cap V \in \mathbf{SP}_n$.

(\mathbb{P}_n can't be a σ (2^{*n*})-linked forcing.)

Theorem

For every $n \in \omega$ and for every $k < 2^n$, $\mathfrak{m}_{\sigma \ k-\text{linked}} \leq \text{non}(\mathbf{SP}_n)$.

イロン 不得 とくほ とくほ とうほ

Theorem

It is consistent with ZFC that $non(SP_n) < non(SP_{n+1})$.

Start with a ground model of ZFC + CH. Consider a finite support iteration of lenght ω_2 of the forcing \mathbb{P}_{n+1} . As all of these forcings strongly preserve non(**SP**₁), then non(**SP**_n) = ω_1 . On the other hand, a reflection argument shows that non(**SP**_{n+1}) $\geq \omega_2$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theorem

It is consistent with ZFC that $non(SP_n) < non(SP_{n+1})$.

Start with a ground model of ZFC + CH. Consider a finite support iteration of lenght ω_2 of the forcing \mathbb{P}_{n+1} . As all of these forcings strongly preserve non(**SP**₁), then non(**SP**_n) = ω_1 . On the other hand, a reflection argument shows that non(**SP**_{n+1}) $\geq \omega_2$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Here are some questions for you.

What can we say about add(**SP**) and cof(**SP**)? Can we separate more than 2 non(**SP**_n)?

Arturo Martínez Cardinal Invariants of porous sets

・ロト ・ 理 ト ・ ヨ ト ・

Here are some questions for you. What can we say about add(**SP**) and cof(**SP**)? Can we separate more than 2 non(**SP**_n)?

・ロト ・ 理 ト ・ ヨ ト ・

Here are some questions for you. What can we say about add(SP) and cof(SP)? Can we separate more than 2 non (SP_n) ?

ヘロン 人間 とくほ とくほ とう